
btllib: A C++ library with Python interface for efficient
sequence processing

Vladimir Nikolić 1 Parham Kazemi 1, 2 Lauren Coombe 1 Johnathan Wong 1 Amirhossein Afshinfard 1, 2 René Warren 1 Inanç Birol 1
1Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada

2Bioinformatics Graduate Program, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Background

Bioinformaticians often write one‐off computer
programs to perform a specific task instead of reusing
existing code. This could be because the already
existing code is either not easily found, the code is not
well written or documented, or it is not efficient or
general enough. This practice leads to lower quality
and non‐reusable code. As bioinformatics analyses
increase in complexity and deal with ever more data,
high quality code is needed for reliable and producible
performance.
The solution to this are well‐designed and
documented libraries, such as SeqAn [1] – a C++
library that implements algorithms and data structures
commonly used in bioinformatics. Not all
programmers are well versed in C++, so for users of
widely used and accessible higher‐level programming
languages such as Python, Biopython [2] is available as
a set of Python modules with implementations of
commonly used algorithms.
Here, we present the btllib library as an addition to
this ecosystem with the goal of providing highly
efficient, scalable, and ergonomic implementations of
bioinformatics algorithms and data structures. The
library is implemented in C++ with Python bindings
available for a high‐level interface.

Conclusions
The goal of btllib is not to compete, but to complement other
available libraries with applications in bioinformatics and
genomics research.
What sets it apart from other libraries is its focus on specialized
algorithms with efficiency and scalability in mind as its aim is to
enable sequence processing for large genomes.
The library can be obtained using the Conda package manager:

conda install -c bioconda btllib

Funding
National Institutes

of Health

Design & Implementation
The library has an implementation of the following algorithms and data structures:

ntHash [3]: A very efficient DNA/RNA rolling hash function, an order of magnitude
faster than the best performing alternatives in typical use cases. The implementation
includes hashing sequences with spaced seeds as well as feeding arbitrary nucleotides
for implicit hash‐based graph traversal.

Bloom filter: A generic Bloom filter data structure. Thread safe and allows insertion of
an array of hash values per element. Allows saving to disk with the associated
metadata.

Counting Bloom filter: A Bloom filter data structure that allows counting of the
number of times an element has been inserted. Allows multithreaded insertion of
elements while minimizing the effect of race conditions and preserving data integrity
at a statistical level. This design was motivated by the need to maximize performance,
as a fully thread safe counting Bloom filter would be unnecessarily slow. Allows saving
to disk with the associated metadata.

Multi‐index Bloom filter [4]: A Bloom filter data structure that associates integer
indices/IDs with the inserted elements. Like the counting Bloom filter, the race
conditions are minimized for multithreaded insertion.

Indexlr: An optimized and versatile minimizer calculator. For a given sequence file,
Indexlr produces minimizers given a k‐mer size and a window size. Optionally outputs
minimizer sequence, sequence length, position, and strand. The library also includes
an indexlr executable that produces minimizers from a given sequence file.

Sequence I/O: SeqReader and SeqWriter classes provide efficient and flexible I/O for
sequence files. SeqReader is capable of reading sequences in different formats such as
FASTA and FASTQ including multiline, and SAM format. SeqReader also supports
multiple threads to read in parallel, each thread receiving a copy of the sequence that
can be modified as well as ad‐hoc compression and decompression of the data in
common formats (gzip, bzip2, xz, lrzip, zip, 7zip).

Utility functions: Various functions for common tasks such as reverse
complementation, string manipulation, and logging.

References

[1] Knut Reinert et al. “The SeqAn C++ template library for efficient sequence analysis: A resource for programmers”. In: Journal of Biotechnology 261 (2017). Bioinformatics
Solutions for Big Data Analysis in Life Sciences presented by the German Network for Bioinformatics Infrastructure, pp. 157–168. ISSN: 0168‐1656. DOI: https:
//doi.org/10.1016/j.jbiotec.2017.07.017. URL: https://www.sciencedirect.com/science/article/pii/S0168165617315420.

[2] Peter J. A. Cock et al. “Biopython: freely available Python tools for computational molecular biology and bioinformatics”. In: Bioinformatics 25.11 (Mar. 2009), pp. 1422–
1423. ISSN: 1367‐4803. DOI: 10.1093/bioinformatics/btp163. eprint: https://academic.oup.com/bioinformatics/article-pdf/25/11/1422/944180/
btp163.pdf. URL: https://doi.org/10.1093/bioinformatics/btp163.

[3] Hamid Mohamadi et al. “ntHash: recursive nucleotide hashing”. In: Bioinformatics 32.22 (July 2016), pp. 3492–3494. ISSN: 1367‐4803. DOI: 10 . 1093 /
bioinformatics/btw397. eprint: https://academic.oup.com/bioinformatics/article- pdf/32/22/3492/19397492/btw397.pdf. URL: https://doi.
org/10.1093/bioinformatics/btw397.

[4] Justin Chu et al. “Mismatch‐tolerant, alignment‐free sequence classification using multiple spaced seeds and multiindex Bloom filters”. In: Proceedings of the National
Academy of Sciences 117.29 (2020), pp. 16961–16968. DOI: 10.1073/pnas.1903436117. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.1903436117.
URL: https://www.pnas.org/doi/abs/10.1073/pnas.1903436117.

Performance

Figure 1. Average counter difference between a 10
Gigabyte counting Bloom filter with a single threaded
and a multithreaded insertion of 250,000 long reads.
The race condition mitigation mechanism minimizes the
differences.

Figure 2.Wall‐clock run time needed to load from disk
and process 250,000 long reads with a simulated
workload of 5ms per read with different number of CPU
threads. The orange datapoints use btllib’s sequence I/O
and the blue data points implement a critical section
approach using an efficient sequence reading code, kseq.

birollab.ca github.com/bcgsc/btllib vnikolic@bcgsc.ca

https://doi.org/https://doi.org/10.1016/j.jbiotec.2017.07.017
https://doi.org/https://doi.org/10.1016/j.jbiotec.2017.07.017
https://www.sciencedirect.com/science/article/pii/S0168165617315420
https://doi.org/10.1093/bioinformatics/btp163
https://academic.oup.com/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://academic.oup.com/bioinformatics/article-pdf/32/22/3492/19397492/btw397.pdf
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1073/pnas.1903436117
https://www.pnas.org/doi/pdf/10.1073/pnas.1903436117
https://www.pnas.org/doi/abs/10.1073/pnas.1903436117
http://www.birollab.ca
https://github.com/bcgsc/btllib
mailto:vnikolic@bcgsc.ca

	References

