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Introduction

Characteristics1

Mechanisms of Action1

Source: Hancock, R. E. W. & Sahl, H.-G. Antimicrobial and host-defense peptides 
as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 
(2006) doi: 10.1038/nbt1267

Motivation

Problem
• Rise of antibiotic resistance1

• Antibiotic “discovery” void2: few new 
antibiotics, but old antibiotics less 
effective

• Need for new antimicrobial agents with 
novel mechanisms without cross-
resistance

Solution
• AMPs do not confer resistance as easily 

as conventional antibiotics, due to co-
evolution with the human microbiome1

• AMPs are a potential alternative to 
antibiotics with broad antimicrobial 
activity3

• AMPs can be mined from organisms of 
rich AMP diversity, such as the North 
American bullfrog4

Antimicrobial Peptides (AMPs)

Peptide Structure1

Above: Magainin-2 (phormicin) from the African clawed frog Xenopus laevis
https://www.rcsb.org/structure/2MAG

https://www.uniprot.org/uniprot/P11006

• AMPs are activated by cleavage at the 
RXXR or KR motif (acidic pro-piece 
inhibits basic bioactive region)

• Cleavage separates the signal peptide 
and acidic pro-piece from the bioactive 
region yielding the mature peptide

PROBLEM
antibiotic 

resistance

SOLUTION
antimicrobial 

peptides

Pre-process 
Reads

• Trim to remove adapter sequences using fastp6

• Filter out poor-quality bases and sequences
• fastp finds adapter sequences using sequence 

overlap

Assemble
Transcripts

• Multi-sample pooled de novo or reference-guided 
assembly of reads into transcripts using RNA-
Bloom7, for both single and paired-end reads

• Lowly-expressed transcripts are filtered out using 
quantification from Salmon8

Translate 
Transcripts

• In silico translation of transcripts into amino acid 
space

• Six-frame translation and open reading frame 
(ORF) prediction using Transdecoder9

Homology 
Search

• Homology search with jackhmmer from the 
HMMER10 package, using AMP databases APD311

and DADP12

Cleave 
Precursors

• Predict signal peptide and propeptide cleavage 
sites using prediction tool ProP13

• Separate signal peptide and acidic propieces from 
the bioactive region 

Prioritize 
AMPs

• Obtain the probability that each sequence is an 
AMP using AMPlify14

• Rank candidate AMPs and prioritize which 
sequences are synthesized and tested in vitro for 
bioactivity

Annotate 
AMPs

• Annotate AMPs using ENTAP15 to determine 
known gene ontologies and protein domains

• Determine AMP novelty by alignment to known 
AMPs using Exonerate16

Characterize 
AMPs

• Predict secondary structures and solvent 
accessibility using SABLE17

• Using SABLE, alpha helix and beta strand 
structures can be predicted

Methods

Objectives
• To develop and execute a scalable 

bioinformatics-based AMP discovery 
pipeline (i.e. rAMPage) to mine for AMP 
sequences in publicly available genomic 
resources

• To package a fully functional 
bioinformatics pipeline

• To obtain a list of candidate AMP 
sequences for
• Downstream analysis
• In vitro bioactivity testing
• Drug development

• To create and improve AMP annotations

Antimicrobial
Peptides

(AMPs)

short defence
peptides 

(5 to 50 amino 
acids)

mostly 
positively 
charged

amphipathic produced by 
all organisms

part of the 
innate immune 

system

classified into 
families based 
on secondary 

structures
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Results
A.

Fig A.18 Count progression from transcripts to AMPs. Across the 84 datasets, 
rAMPage assembled > 53 million transcripts, and detected > 1000 putative AMPs (AMPlify
score >= 0.50 is an AMP; stricter criteria used above).

B.

Fig B.19 AMP counts after applying three filters. Three strict filters (AMPlify score >= 
0.90 [amphibians], 0.80 [insects]; length <= 30aa; charge >= 2) are applied in rAMPage. 
[Left] 795 amphibian AMPs remain after filtering and duplicate sequence removal. [Right] 
346 insect AMPs remain after filtering and duplicate sequence. If desired, more AMPs (of 
lower overall confidence) can be detected by adjusting the stringency of each filter.

C.

Fig C.18 Runtime and memory usage of rAMPage. rAMPage is fast: with < 1 billion 
reads (74 out of 84 datasets), results can be obtained within 24 hours, using < 200 GB of 
memory. Larger datasets with > 1 billion reads can be subsampled to reduce runtime and 
memory usage.

Conclusions
• Across the 84 assembled transcriptomes, 

1,141 confident (AMPlify score >= 0.90 
[amphibians], 0.80 [insects]), short (length 
<= 30aa), and positive (charge >= 2) unique 
mature putative AMPs were found:  795 
from amphibians, 346 from insects

• Of these 1,141 AMPs, 139 sequences align 
to known AMPs with 100% sequence 
identity in the mature region; 1,002 
sequences are ‘novel’ AMPs

• rAMPage is a fast, robust bioinformatics 
pipeline that, given raw reads, can discover 
known and novel putative AMPs
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